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Abstract. Due 1o the precminent work of the Real-Time Specification for Java
(RTSJ), Java is increasingly expected to become the leading programming lan-
guage in embedded real-time systems. To provide an efficient Java platform
suitable for real-time applications. a hard real-time Java processor (HRTEJ) can
execute Java bytecode directly is proposed in this paper. It efficiently supports
mechanisms specificd by the RTSJ and offers a simpler programming model
through ameliorating the scoped memory of the RTSJ. The worst case execu-
tion time (WCET) of this processor is predictable by employing the optimiza-
tion method proposed in our previous work[1], in which all the processing in-
terfering predictability is processed before bytecode execution. Further advan-
tage of this method is to make the implementation of the processor straightfor-
ward and suited to a low-cost FPGA chip.

1 Introduction

The complexity of embedded real-time systems keeps growing and novel methods
and tools are required. With the advantages as an object-oriented and concurrent
programming language, and with the occurrence of the real-time specification for
Java (RTSJ)[2], Java is increasingly expected to become the leading programming
language in embedded real-time systems.

Currently, to provide an efficient Java platform suitable for real-time applications,
many different implementing methods are tried. real-time Java platforms can be gen-
erally classified as follows according to their implementing methods: 1). Interpreter,
in this manner, Java platform is an interpreting program running on the operating
system that can interpret and execute java bytecode under the assistance of the OS.
RJVM(3], JTime[4], and Mackinac[5] all belong to this way. 2). Ahead-of-Time
Compiler, in this manner, Java bytecode is compiled into native code or an intermedi-
ate language (e.g. C) in advance. Anders Nilsson et al[6] employed this method to
insure real-time performance of the Java applications. In their implementation, C is
taken as the intermediate language. 3). Java Processor, in this manner, the Java plat-
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form is implemented directly on silicon. It not only avoids the overhead of translation
of the bytecode to another processor’s native language, but also provides special sup-
port for Java runtime features such as stack processing, multithreading etc. alile[7]),
FemtoJava[8] and JOP[9] are all real-time Java processors implemented in the FPGA.

Comparing with other implementing techniques, Java processor is preferable in
embedded systems for its high execution efficiency and low memory footprint. There-
fore, it becomes popular in implementing embedded real-time Java platforms. Pres-
ently, FemtoJava and JOP do not put emphasis on supporting the RTSJ. alile systems
announces the RTSJ will be supported on top of the aJ-80 and aJ-100 chips.

In this paper, we propose a simple Java processor suitable for embedded real-time
applications and it is dedicated to supporting RTSJ features more efficiently. This
processor implements RTSJ mechanisms effectively and offers a simpler program-
ming model through ameliorating the scoped memory of the RTSJ. According to the
optimization method proposed in work[1], all the processing interfering predictability
is completed before bytecode execution, thus, this processor is simple to implement
and its worst case execution time (WCET) is more predictable.

2 RTSJ related concepts

RTSJ is a specification for extending the Java language specification[10] and the Java
virtual machine specification[11], and providing an application programming inter-
face(API) that will enable the creation, verification, analysis, execution, and man-
agement of Java threads whose correctness conditions include timeliness constraints.
It contains some enhanced areas such as thread scheduling and dispatching, synchro-
nization and resource sharing, asynchronous event handling, asynchronous transfer of
control, asynchronous thread termination, memory management, and physical mem-
ory access. The details of the RTSJ can be found in [2]. In this paper, we put empha-
sis upon the special support for the RTSJ mechanisms in our processor, the methods
to guarantee its real-time performance is discussed as well.

3 Implementation of the HRTEJ processor

As described in [1], to guarantee the real-time performance of the processor, standard
Java class files was processed by the CConverter (the program we designed to pre-
process the Java class file) before being executed on the processor. During this phase,
all the classes needed in the application are loaded, linked and transformed into the
binary representation shown in Fig.1 that can be executed directly on the processor.
Once power on, the HRTEJ processor starts to execute /nitial code to do system ini-
tialization according to the Initial parameters. Then, it enters main thread creating
code and executes bytecode from there step by step.
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Init parameters
Generic AIE
Init Code
Scheduler
Thread 0
Thread n-1
waitObject 0
waitObject n-1
Main thread creating code
Main(
Other methods
Static fields
String
Class(method table)
Immortal memor
LTMemory
Others

Fig.1. Memory layout of the binary representation.

3.1 Thread management in the HRTEJ processor
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Fig.2. Thread related architecture of the HRTEJ processor. Run_T, Ready T, Block T and
Dead T are the n-bit (n is the width of the data path) registers to record the queues of threads
which are running, ready, blocked and dead respectively. A thread can be put into a queue by
setting corresponding bit of that register to ‘1" according to this thread’s priority. ThisThread
records the object reference of current running thread. Wait_Base is the base address of the
static fields WaitObject0~n-1 in Fig.1. STK_base(~n-1 is the base address of the stack for each
thread. LTMAddr0~n-1 is the base address of the LTMemory memory for each thread.

The HRTEJ processor can support n (n is the width of the data path) threads at most
with unique priority from 0 to n-1 (0 is the highest priority). These threads (several
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threads are kept for processor itself) can be created and terminated dynamically dur-
ing execution. Creating a new thread just like creating a general object, but the object
reference of this thread should be put into the corresponding static field Thread0~n-1
according to this thread’s priority. The processor can terminate a thread by moving
the corresponding ‘1’ from other queues to the Dead_ T according to its priority.
When scheduling occurs, the context of the preempted thread is saved at the top of its
own stack. The thread object and its corresponding context (registers in the processor)
are shown in Fig.3.

Thread Object Struct

Class
method runtime
rnonirt?‘rh Sl context stack
monCnt this
Priority praC
Timeout LV
Click SE
throwAIlE
Join
dolnterruptiblie
Name Fst_catch
Interrupted extab_addr
Context extab_len
logic Locked
Release | [ -e-een
Exchange PC
pending
AlE__ref
AIE_jlevel
LTM

Fig.3. Tread objects structure of the HRTEJ processor. Priority is the priority of a thread (0 to
n-1). Join records the object reference of the thread to wake up when current thread is finished.
Interrupted is the flag compatible with the conventional thread to record if the interrupi()
method of this thread is called. Context is the stack pointer of the preempted thread’s context.
Logic is the bytecode sequence executed by the run() method of a thread. Exchange records the
original priority when priority inheritance avoidance is taken. LTM is current address of the
LTMemory memory for a thread.

As shown in Fig.3, the context of a preempted thread is pushed into its own stack,
and the pointer of the stack is saved in the field Context of the thread object. The
context can be restored starting from the Context pointer when this thread is selected
again.

Wait method implementation: When a thread calls the wait() method and the re-
quested object is locked by another thread, this thread releases the object locked by
itself and records the requested object reference in corresponding field WaitOb-

JjectO~n-1 according to its priority and blocks itself. This static field will be checked
when another thread calls the notifj() method.

Join method implementation: Using the instance field join to record the object
reference of the thread to wake up when current thread is finished.

Priority inheritance implementation: If a thread wants to enter a synchronized
block which another thread with a lower priority is in, then the priority inheritance
must be taken. In HRTEJ, a simple method to implement the priority inheritance is
adopted. The scheduler checks the field Exchange of the thread owning the shared
object, if the priority inheritance has been taken (Exchange != -1), the higher priority
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will be assigned to this thread directly. Otherwise, the original priority of this thread
is saved in its Exchange field, then, the higher priority is assigned to it. When this
thread releases the locked object, it takes the original priority back again from Ex-
change.

As discussed above, special hardware is used in the HRTEJ processor to ensure the
predictability of WCET. The clock cycles of thread scheduling, dispatching, and
other thread related mechanisms are all predictable in the HRTEJ processor.

Asynchronous thread termination is processed in the same way with asynchronous
transfer of control. Physical memory access is not supported in HRTEJ to conceal the
details of memory allocation from Java programmers. The special hardware in
HRTE]J for thread scheduling, synchronization, asynchronous transfer of control and
memory management will be introduced in following sections.

3.2 Implementing ATC in the HRTEJ processor

1 ATC preprocessing by the CConverter
CConverter reads standard Java class file and converts all of the methods into a bi-
nary format. Attributes of each method are stored in fields with a determinate location.
CConverter processes the exception table of every method, and assigns correct
values that HRTEJ can process directly to the items extab_addr, extab_len, and ex-
tab_item.

2 ATC triggered by target.interrupt() or target.aie.fire()
The ATC is triggered by invoking method interrupt() or aie.fire() in a thread.
cur_level, cur_AIE is variants defined in interrupt() or aie.fire().
ATC related fields of each thread shown in Fig.4.
Pending: it shows there is an AIE in action.
AIE_ref: the reference of the received AIE.
AIE_level: the method invocation level of the received AIE.
if(target.pending == 0){ /o AIE in pending
target.pending = 1; /Mtarget thread is marked pending
target. AIE_ref = cur_AIE; //record the object’s reference for generic or spe-
cific AIE thrown currently
}else{ /lother AIE in pending, replacement rules must be taken
if(cur_AIE == GenericAlE){//generic AIE has a higher priority
target.AIE_ref = cur_AIE;
telseif(cur_AIE!=GenericAIE& &target. AIE_refl=GenericAIE){
if(target. AIE_level>cur_level){//record the AIE with higher priority.
target. AIE_ref = cur_AIE;
}

}
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3 ATC processed by the scheduler

ATC related registers in HRTEJ:

throwAIE: it denotes whether the current method has a throws AIE clause.
dolnterruptible: denote if there are catch AIE or its superclass, finally clauses in this
method.

Fst_catch: record the first reference of method context be used to process the AlE.
Locked: denoting if this method is a synchronized method or not.

When the target thread of the thrown AIE is scheduled again, the scheduler will
process it based on three different conditions. When the target thread is in an Al-
deferred section, the scheduler restores its context and executes it as a normal thread.
When the target thread is in an Al section and it is the run() method of interface do-
Interruptible, the scheduler pops the stack frame of run() method and restores the
context of method interruptAction() to handle the AIE. When the target thread is in
an Al section and it is in other methods instead of run() method of interface do/nter-
ruptible, the scheduler will restore context from the register fst_catch to handle the
AlE.

3.3 Memory management in the HRTEJ processor

Ltm memory object Immo memory object
object ———=f class
...... reference monitor
. monCnt
object i
e ., mmo —————
reference Semmnnl | 00020 P
monitor
LT™M monCnt
—_—

v| HEAP ——

Fig.4. Memory management of the HRTEJ processor. LTM is current pointer to allocate space
in the LTMemory of the running thread. Immo is current pointer to allocate space in the Immor-
tal Memory. HEAP points to LTM or IMMO to concretely complete an allocation.

Memory management policy in the HRTEJ processor:
New LTMemory / ImmortalMemory:
class(classAddr)=>mem[LTM/Immo++};
monitor(0) => mem[LTM/Immo ++];
monCnt (0) => mem[LTM/Immo ++];
return the LTMemory/ImmortalMemory object reference(LTM/Immo-3);

LTMemory.enters * £/}’ denotes LTM; *0’denotes IMMO;
'1'=>MEMType; LTM => HEAP;

LTMemory.exit()
this => LTM: //go back to last LTM scope

ImmortalMemory.enter()
'0' => MEMType; Immo => HEAP;
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New GeneralObject:
HEAP+ObjectSize => HEAP
i(MEMType =='0) HEAP =>Immo; //update Immo
Else HEAP=>LTM;  //update LTM

To avoid the interference of garbage collector and keep the efficiency about mem-
ory space, the LTMemory is provided in the HRTEJ processor. In standard RTSJ, the
memory size must be specified by the programmer to use the LTMemory. It makes
the programming model a little tricky to Java programmers. As described above, in
the HRTEJ processor, an API exir() is offered to avoiding the programmer to specify
the memory size for a LTMemory. This programming model is more maneuverable
for the Java programmer. Moreover, without shared LTMemory between threads and
based on the operation policy above, the memory management WCET of the HRTEJ
processor is predictable.

4 Evaluation and discussion

The HRTEJ processor is implemented in experimental platform FD-MCES which
provides a FPGA chip XC2S150-PQ208 and some debugging conveniences. Through
the monitoring software FD-uniDbugger, the bytecode execution on top of HRTEJ
can be traced single cycle. Due to the constraints of the experimental platform, the
current version of HRTEJ is 16-bit and about 100 instructions implemented with
several extended instructions. The memory used is 32Kx16 with 0.lus latency, so,
read and write without cache by HRTEJ with 8M frequency can be completed in one
cycle that simplifies the WCET analysis.
Table 1. Clock cycles of bytecode execution time

HRTEJ HRTEJ JOP JOP

iload 2 241 2 2
iadd 1 1 1 1
iinc 8 T+r 11 11
Idc 8 6+2*r 4 3+r
if_icmplt taken 10 9+r 6 6
if_icmplt not taken 10 O+r 6 6
getfield 7 5+2*r 12 10+2*r
putfield 7 S5+w+r 15 13+r+w
getstatic 8 6+2*r 6 4+2*r
putstatic 8 6+w+r 7 Striw
1aload 2 2+r 21 19+2*r
invoke 43 34+9*r 82 78+4*r+b
invoke static 39 29+10*r 61 58+3*r+b
invoke interface n/a n/a 90 84+6*r+b
dup 2 2 I I
new 12 12 Java Java
iconst_x 2 2 1 1
aconst_null 2 2 1 1
astore X 3 3 1 1
aload X 3 3 1 ]
return 20 20 14 13+r+b
ireturn 22 22 16 15+r+b
oto 5 4+r 4 4

ipush 4 4+r 2 2

pop 1 ] 1 ,17
1store 2 2+r 2 2
istore X 3 3 1 1
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Table 1 shows some bytecode execution time in cycles implemented by the JOP
and the HRTEJ processor. r denotes the time to complete a memory read and w de-
notes a memory write when the bytecode needs access the memory. b is the bytecode
loading time when a cache miss happened in JOP. There is no instruction/method
cache implemented in HRTEJ till now, so b is not used for denoting its bytecode
execution cycles. The column 1 and 3 show the bytecode execution time assuming
that =w=1 and b=0. Obviously, the JOP with 100M frequency has a much higher
performance than HRTEJ. Currently, the HRTEJ processor puts more emphases on
the predictability than the performance. The performance will be considered carefully
at the next step.

Estimating the WCET of tasks is essential for designing and verifying a real-time
system. Because the measured execution times of tasks is sensitive to their inputs. As
a rule, static analysis is a necessary method for hard real-time systems. Therefore, the
WCET of the example shown in appendix is static analyzed to demonstrate the real-
time performance of the HRTEJ processor.

Thread main(intcrnal)

New #27; /elass LTMemory
Invokevirtual #32; /LTMemory.enter() ,
new "2, Jclass Demo Thread t0

Invokevirtual #48; //t0.start()
Return;
Scheduling; /10.run()

Goto 37;
S: new #27; Hclass LTMemory

Invokevirtual #32; //LTMemory.enter()

(_\ new #34; Jiclass DataProcessor
Thread t1 Invokevirtual #38; //tl start()

s if ict

Invokevirtual #31; /LTMemory.exit() l l impll ’

Return -okevi #41; /ILT .exit
Scheduling /10.run() rlen:ucﬁ.‘ewnual ’ MemmayiexiiC

—

Fig.5. Thread scheduling of example Demo.java in appendix. The bytecode compiled from
Demo.java can be mainly partitioned as 3 parts. In each part, the WCET of the general byte-
code listed in Table 2 is predictable. For thread /0, there is a finite loop. Its WCET can be
calculated as /00*WCET (general code + LTMemory + stari() + Scheduling). Method start()
sets the created thread into queue Ready T and wait scheduling. Scheduling denotes the
WCET of the scheduler execution when a thread scheduling happens. The WCET of the
LTMemory operation is predictable as shown in Fig.4. Thus, just the WCET of the method
start() and Scheduling are analyzed in detail below.

The process of method t.start() and its WCET:

Disable the interrupt; ( cycle)
Save the PC for current thread; (1 cycle)
Put current thread into Ready_T; 2 cycles)
Jump to the scheduler; (1 cycle)

The process of Scheduling and its WCET:
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Disable the interrupt;
Save the context of the preempted thread; (17 cycles)

Move corresponding ‘1’ from Run_T to Ready T; 2 cycles)
Move the leftmost *1” to the corresponding bit in Run_T; 2

Q1 cycle)

cycles)
Save the thread reference to ThisThread register; A3 cycles)
Restore the context for the thread corresponding to the leftmost *1°;(16 cycles)

From discussed above, the WCET of the method start() and scheduling is also pre-
dicted. So, the real-time performance of the whole application can be guaranteed.
Furthermore, in appendix, the efficiency of the LTMemory is illustrated clearly. The

maximal allocation of the LTMemory space in this example is S(10)+S(t]) instead of
S(t0)+100*S(t1). S(t) denotes the space of thread t.

Another advantage leamed from this example is that the programming model of

the LTMemory is very simple. Java programmers just need creating and entering a
LTMemory space to use it instead of denoting its memory size.

5 Conclusions

In order to employ Java programming language to improve development efficiency,
security and robustness of real-time systems, many different real-time Java platforms
were proposed. Due to high execution efficiency, low memory footprint and low
power consumption, Java processor is preferable for embedded real-time systems. In
this paper, a hard real-time Java processor based on the RTSJ is implemented. This
processor provides some special supports for the mechanisms specified in the RTS)
such as ATC, scoped memory etc. Because most of the operations are preprocessed

by the CConverter, this processor is simple to implement and suitable for low cost
real-time systems.
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Appendix

Demo.java
import javax.realtime.*;
class DataProcessor extends NoHeapRealtimeThread(
int data=0;
public DataProcessor(int priority){
super(priority);

)

public void run(){
System.out.printn(“Processing in DataProcessor");
Demo.ltm1.exit();

)

)
public class Demo extends NoHeapRealtimeThread{
public static LTMemory Itm = null;
public static LTMemory Itm1 = null;
public Demo(int priority){
super(priority);

)
public void run(){
for(int i=0; i<100; i++){
Itm1 = new LTMemory();
lItm1.enter();
DataProcessor t1 = new DataProcessor(3);
tl.start();
) Itm.exit();

public static void main(String[] args){
Itm = new LTMemory();
[tm.enter():
Demo t0 = new Demo(S);
10.start();



